Bridge voltages with open and short lines
What are the bridge voltages $V_z$ and $V_a$ if the reflectometer is connected to a lossles open or short circuit transmission line?
Working in normalised units ($Z_0=1.0+j0.0$),
| $$V_a=\frac{1}{\vert Z+1\vert }$$ |
| $$V_z=\frac{\vert Z\vert }{\vert Z+1\vert }$$ |
For a short-circuited transmission line, the input impedance is
| $$Z=j\tan(\beta l)$$ |
So, $\vert Z \vert = \tan(\beta l)$, and
| $$\vert Z+1\vert = \vert 1 + j\tan(\beta l) \vert $$ |
As $\tan$ is $\frac{\sin}{\cos}$:
| $$\vert Z+1\vert = \vert 1 + j\frac{\sin(\beta l)}{\cos(\beta l)} \vert = \frac{1}{\cos(\beta l)} \vert \cos(\beta l) + j\sin(\beta l) \vert $$ |
and we know that
| $$\vert \cos(\beta l) + j\sin(\beta l) \vert = 1 $$ |
So
| $$\vert Z+1\vert = \frac{1}{\cos(\beta l)} $$ |
Hence,
| $$V_a = \frac{1}{\vert Z+1\vert } = \cos(\beta l)$$ |
and
| $$V_z = \frac{\vert Z\vert }{\vert Z+1\vert } = \frac{\tan(\beta l)}{\cos(\beta l)} = \sin(\beta l)$$ |
</div>